打赏

相关文章

Canvas 画布

文章目录 1. 初识1.1 认识画布1.2 兼容性1.3 上下文属性 2. 绘制2.1 绘制基本图形2.1.1 绘制矩形2.1.2 绘制圆形2.1.3 绘制直线2.1.4 绘制圆弧2.1.5 绘制贝塞尔二次曲线2.1.6 绘制贝塞尔三次曲线2.1.7 封装路径 2.2 颜色控制2.2.1 颜色设置2.2.2 线性渐变2.2.3 径向渐变2.2.4 圆…

Python 实现斐波那契数列的方法

以下是使用 Python 实现斐波那契数列的方法&#xff1a; def fibonacci(n): if n < 1: return n else: return fibonacci(n - 1) fibonacci(n - 2) # 打印前 10 个斐波那契数 for i in range(10): print(fibonacci(i)) 在这个代码中&#xff0c;定义了一个函数 fibonacc…

【每日刷题】Day147

【每日刷题】Day147 &#x1f955;个人主页&#xff1a;开敲&#x1f349; &#x1f525;所属专栏&#xff1a;每日刷题&#x1f34d; &#x1f33c;文章目录&#x1f33c; 1. 神奇数_牛客笔试题_牛客网 2. DNA序列__牛客网 3. I-十字爆破_牛客小白月赛25 1. 神奇数_牛客笔…

动态规划 —— 路径问题-下降路径最小和

1. 下降路径最小和 题目链接&#xff1a; 931. 下降路径最小和 - 力扣&#xff08;LeetCode&#xff09;https://leetcode.cn/problems/minimum-falling-path-sum/description/ 2. 算法原理 状态表示&#xff1a;以莫一个位置位置为结尾 dp[i&#xff0c;j]表示&#xff1a;到…

学习笔记:黑马程序员JavaWeb开发教程(2024.10.30)

5.3 请求响应-请求-简单参数 客户端使用postman实现&#xff0c;服务端通过idea&#xff0c;又两种请求方式&#xff0c;springboot的更加简洁方便 对于RequestParam&#xff0c;可以通过设置requiredflase来让参数不是必须传递的 在请求参数过多的时候&#xff0c;可以将请求参…

玄机-应急响应- Linux入侵排查

一、web目录存在木马&#xff0c;请找到木马的密码提交 到web目录进行搜索 find ./ type f -name "*.php" | xargs grep "eval(" 发现有三个可疑文件 1.php看到密码 1 flag{1} 二、服务器疑似存在不死马&#xff0c;请找到不死马的密码提交 被md5加密的…

手机版浏览

扫一扫体验

微信公众账号

微信扫一扫加关注

返回
顶部